This book presents the tunable biological characteristics of nanobioceramics and focuses on some challenges in bone tissue engineering and regenerative medicine. Synthetic composite-based materials and scaffolds should be biodegradable, biocompatible and supply sufficient structural aid for cell migration, along with oxygen, waste, and nutrient carriage to accelerate bone regeneration process and remodeling in defects. These properties may be reached by functioning tunable physical features, including absorption rate, degradation rate, modulus, porosity, and swelling by adjustments with the addition of ceramic phases and copolymers as synthetic composite scaffolds. Synthetic bioceramics seek to imitate the natural hydroxyapatite (HA) crystal creation located in bone. These ceramics, particularly calcium phosphates, have exhibited great osteoinductivity, osteoconductivity, and biocompatibility. Lately, silicon-based glass-ceramics have been investigated as a substitution of calcium phosphates. Several members of this collection exhibit high bioactivity, have attractive mechanical strength, and are known to increase cell proliferation, adhesion, and mineralization of extracellular matrix. Moreover, antibacterial properties of some nanostructured bioceramics established significant interests in avoiding implants rejection in surgery and biomedicine.

Les mer
<p>This book presents the tunable biological characteristics of nanobioceramics and focuses on some challenges in bone tissue engineering and regenerative medicine.</p>

Introduction.- Bone.- Bone Cells.-  Bone Extracellular Matrix.- Bone ECM Proteins Part I.- Bone ECM Proteins Part II.- Bioactivity and Osteogenic Features.- Nano-Bioceramics.- Composites for BTE.

Les mer

This book presents the tunable biological characteristics of nanobioceramics and focuses on some challenges in bone tissue engineering and regenerative medicine. Synthetic composite-based materials and scaffolds should be biodegradable, biocompatible and supply sufficient structural aid for cell migration, along with oxygen, waste, and nutrient carriage to accelerate bone regeneration process and remodeling in defects. These properties may be reached by functioning tunable physical features, including absorption rate, degradation rate, modulus, porosity, and swelling by adjustments with the addition of ceramic phases and copolymers as synthetic composite scaffolds. Synthetic bioceramics seek to imitate the natural hydroxyapatite (HA) crystal creation located in bone. These ceramics, particularly calcium phosphates, have exhibited great osteoinductivity, osteoconductivity, and biocompatibility. Lately, silicon-based glass-ceramics have been investigated as a substitution of calcium phosphates. Several members of this collection exhibit high bioactivity, have attractive mechanical strength, and are known to increase cell proliferation, adhesion, and mineralization of extracellular matrix. Moreover, antibacterial properties of some nanostructured bioceramics established significant interests in avoiding implants rejection in surgery and biomedicine.

Les mer
Highlights the tunable biological characteristics of nanobioceramics Presents synthetic composite-based materials and scaffolds that are biodegradable and aid in cell migration Discusses the use of silicon-based glass ceramics as a substitute for calcium phosphates
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9789819600403
Publisert
2025-01-31
Utgiver
Vendor
Springer Nature Switzerland AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet

Biographical note

Reza Gholami obtained his master's degree in Nanotechnology-Nanomaterials Engineering from Iran University of Science and Technology. He also obtained his bachelor's degree in Chemical Engineering from Islamic Azad University, Science and Research Branch. He ranked among the top three students in his faculty during his studies. Since 2019, he has been investigating novel nanomaterials and therapies for various cancers, particularly nano-bioceramics and bone-related malignancies, at the Motamed Cancer Institute as a research assistant. Since 2022, he has maintained his role as Laboratory Director of the chemical and cell culture laboratories at Motamed Cancer Institute. Possessing more than five years of research experience in nano-biomaterials, nanoparticles, nanocarriers, nano-bioceramics, cancer studies, and nano-biosensors, he is recognized as a talented young researcher in these fields. 

 

Dr. Seyed Morteza Naghib received his Ph.D. in biomedical engineering from Tehran Polytechnique (2014) and M.ASc. (2010) and B.ASc. (2009) degrees from Amirkabir University of Technology both in biomedical engineering (biomaterials). His research interests are in the areas of tissue engineering, medical nanotechnology, nanobiomaterials, nanocarriers, and nanobiosensors. He also published 3 books in the field entitled "Localized Micro/Nanocarriers for Programmed and On-Demand Controlled Drug Release", "Electrochemical Biosensors in Practice: Materials and Methods", and "Green plant extract-based synthesis of multifunctional nanoparticles and their biological activities".