This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.
Les mer
This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer.
Advances in Machine Learning Approaches in Cancer Prognosis.- Data Analysis on Cancer Disease using Machine Learning Techniques.- Learning from multiple modalities of imaging data for cancer detection/diagnosis .- Neural Network for Lung Cancer diagnosis.- Improved Thyroid Disease Prediction Model Using Data Mining Techniques with Outlier Detection.- Automated Breast Cancer Diagnosis Based on Neural Network Algorithms.
Les mer
This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.
Les mer
Discusses all types of cancer diseases information with their detection, solution, and prevention Presents advanced machine learning approaches spanning the areas of neural networks, fuzzy logic, connectionist systems, genetic algorithms, evolutionary computation, cellular automata, self-organizing systems, fuzzy systems, and hybrid intelligent systems for solving the cancer diseases Covers advanced methodologies, challenges, and solutions of diversified cancer-related issues
Les mer
Produktdetaljer
ISBN
9783030719746
Publisert
2021-05-30
Utgiver
Vendor
Springer Nature Switzerland AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, UP, UU, 06, 05
Språk
Product language
Engelsk
Format
Product format
Innbundet