“Das Lehrbuch der Differenzial- und Integralrechnung in einer Veränderlichen für das Bachelorstudium baut als Grundkurs für Erstsemester auf Schulwissen auf. Ziel des Grundkurses ist die Vermittlung der Rechenmethoden, eine Einführung in die Kunst des mathematischen Problemlösens und das Erlernen präziser Beweistechniken ...” (ekz-Informationsdienst, Heft 21, 2020)
Der vorliegende erste Teil eines zweisemestrigen Grundkurses in Analysis wendet sich an Studierende im ersten oder zweiten Semester eines Bachelor-Studiums in Mathematik, Physik, Naturwissenschaften oder Informationstechnologie und ganz besonders auch an Lehramtskandidaten. Schwerpunkte des ersten Bandes bilden der Grenzwertbegriff und die Differential- und Integralrechnung in einer Veränderlichen.
Im zweiten Band wird dann die Differentialrechnung in mehreren Veränderlichen und das Lebesgue-Integral behandelt.
Frühe Ausflüge ins Mehrdimensionale wecken Neugier und bereiten auf abstraktere Themen vor. Zusammenfassungen am Schluss jedes Abschnittes unterstützen bei der Prüfungsvorbereitung.
Der Grundkurs schafft eine solide Ausgangsbasis für weiterführende Vorlesungen, vermeidet aber bewusst ein paar gefürchtete Hürden. Soweit möglich werden schwierigere Themen in die optionalen Ergänzungen verlagert. Begleitet wird der Stoff von zahlreichen Illustrationen, Ablaufdiagrammen, Tabellen, Beispielen und Aufgaben.
Das Buch ist geeignet zum Selbststudium, als Begleitlektüre und ganz besonders auch zur Prüfungsvorbereitung.
Der vorliegende erste Teil eines zweisemestrigen Grundkurses in Analysis wendet sich an Studierende im ersten oder zweiten Semester eines Bachelor-Studiums in Mathematik, Physik, Naturwissenschaften oder Informationstechnologie und ganz besonders auch an Lehramtskandidaten.
Die Sprache der Analysis.- Der Grenzwertbegriff.- Der Calculus.- Vertauschung von Grenzprozessen.- Lösungen und Hinweise.- Hinweise zum Trainingsbuch.- Literaturverzeichnis.- Symbolverzeichnis.- Stichwortverzeichnis.
Der vorliegende erste Teil eines zweisemestrigen Grundkurses in Analysis wendet sich an Studierende im ersten oder zweiten Semester eines Bachelor-Studiums in Mathematik, Physik, Naturwissenschaften oder Informationstechnologie und ganz besonders auch an Lehramtskandidaten. Schwerpunkte des ersten Bandes bilden der Grenzwertbegriff und die Differential- und Integralrechnung in einer Veränderlichen.
Im zweiten Band wird dann die Differentialrechnung in mehreren Veränderlichen und das Lebesgue-Integral behandelt.
Ausgangspunkt ist das mitgebrachte Schulwissen. Kurze Einführungen greifen dieses Vorwissen auf, motivieren oder fassen wichtige Voraussetzungen zusammen. Im Zentrum des Grundkurses geht es gleichermaßen um Rechenmethoden, die Kunst des Problemlösens und das Erlernen präziser Beweistechniken.
Frühe Ausflüge ins Mehrdimensionale wecken Neugier und bereiten auf abstraktere Themen vor. Zusammenfassungen am Schlussjedes Abschnittes unterstützen bei der Prüfungsvorbereitung.
Der Grundkurs schafft eine solide Ausgangsbasis für weiterführende Vorlesungen, vermeidet aber bewusst ein paar gefürchtete Hürden. Soweit möglich werden schwierigere Themen in die optionalen Ergänzungen verlagert. Begleitet wird der Stoff von zahlreichen Illustrationen, Ablaufdiagrammen, Tabellen, Beispielen und Aufgaben.
In der dritten Auflage wurden jetzt auch die Lösungen der Aufgaben integriert.
Das Buch ist geeignet zum Selbststudium, als Begleitlektüre und ganz besonders auch zur Prüfungsvorbereitung.
Der Autor
Klaus Fritzsche ist Autor zahlreicher erfolgreicher Lehrbücher, u.a. des beliebten Brückenkurses „Mathematik für Einsteiger“.
Sanfter und übersichtlicher Einstieg in die Analysis, besonders für Bachelorstudenten empfehlenswert. Prof. Dr. Gerd Laures, Universität Bochum
Schon wieder ein Analysis-Buch? Ja, aber eines, das perfekt auf Bachelor-Studiengänge zugeschnitten ist! Prof. Dr. Hans Josef Pesch, Universität Bayreuth
Das didaktische Konzept dieses in die Analysis einführenden Lehrbuchs ist rundum gelungen, und ich kann dem Autor zu diesem Werk nur gratulieren. Prof. Dr. Peter Maria Wirtz, Fachhochschule Regensburg
Das vorliegende Buch stellt eine echte Konkurrenz zu vielen etablierten Lehrbüchern der Analysis dar, da es für die unterschiedlichen Hörerkreise die wesentlichen Gedanken der Analysis in gut verständlicher Art und Weise deutlich macht und durch seine klar strukturierte, zweifarbige Ausstattung den Prozess der Wissensaneignung in hervorragender Weise unterstützt. Prof. Dr. Bernd Luderer, Technische Universität Chemnitz
Produktdetaljer
Biographical note
Klaus Fritzsche ist Autor zahlreicher erfolgreicher Lehrbücher, u.a. des beliebten Brückenkurses „Mathematik für Einsteiger“.