Statistical Modeling in Machine Learning: Concepts and Applications presents the basic concepts and roles of statistics, exploratory data analysis and machine learning. The various aspects of Machine Learning are discussed along with basics of statistics. Concepts are presented with simple examples and graphical representation for better understanding of techniques. This book takes a holistic approach – putting key concepts together with an in-depth treatise on multi-disciplinary applications of machine learning. New case studies and research problem statements are discussed, which will help researchers in their application areas based on the concepts of statistics and machine learning.
Statistical Modeling in Machine Learning: Concepts and Applications will help statisticians, machine learning practitioners and programmers solving various tasks such as classification, regression, clustering, forecasting, recommending and more.
Les mer
1. Introduction to Statistical Modelling in Machine Learning - A Case Study
2. A Technique of Data Collection- Web Scraping with Python
3. Analysis of Covid-19 using Machine Learning Techniques
4. Discriminative Dictionary Learning based on Statistical Methods
5. Artificial Intelligence based Uncertainty Quantification technique for External flow CFD simulations
6. Music Genres Classification
7. Classification Model of Machine Learning for Medical Data Analysis
8. Regression Models for Machine learning
9. Model Selection and Regularization
10. Data Clustering using Unsupervised Machine Learning
11. Emotion-based classification through fuzzy entropy enhanced FCM clustering
12. Fundamental Optimization Methods for Machine Learning
13. Stochastic Optimization of Industrial Grinding Operation through Data-Driven Robust Optimization
14. Dimensionality Reduction using PCAs in Feature Partitioning Framework
15. Impact of Mid-Day Meal Scheme in Primary Schools in India using Exploratory Data Analysis and Data Visualisation
16. Nonlinear System Identification of Environmental pollutants using Recurrent Neural Networks and Global Sensitivity Analysis
17. Comparative Study of Automated Deep Learning Techniques for Wind Time Series Forecasting
Les mer
Presents the key concepts of statistics applied to Machine Learning using a case study approach and solved real-world examples
Provides a comprehensive overview of the state-of-the-art in statistical concepts applied to Machine Learning with the help of real-life problems, applications and tutorials
Presents a step-by-step approach from fundamentals to advanced techniques
Includes Case Studies with both successful and unsuccessful applications of Machine Learning to understand challenges in its implementation, along with worked examples
Les mer
Produktdetaljer
ISBN
9780323917766
Publisert
2022-11-07
Utgiver
Vendor
Academic Press Inc
Vekt
810 gr
Høyde
235 mm
Bredde
191 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
396
Redaktør