This book introduces the centralized robust H∞ team formation tracking control strategy of multi-unmanned aerial vehicle (multi-UAV) network system under intrinsic random fluctuation, time-varying delay and packet dropout in wireless communication, and external disturbance. A simple robust decentralized H∞ proportional-integral-derivative (PID) reference tracking network control strategy is introduced for practical applications of team formation of large-scale UAV under control saturation constraint, external disturbance, and vortex coupling. It provides practical design procedures based on linear matrix inequalities (LMIs) solvable via LMI TOOLBOX in MATLAB®. Features: Focuses on the stabilization of a QUAV under finite-time switching model control (SMC) Discusses robustness control design for formation tracking in UAV networks Introduces different robust centralized and decentralized H∞ attack-tolerant observer-based reference team formation tracking control of large-scale UAVs Reviews practical case studies in each chapter to introduce the design procedures Includes design examples of team formation of 25 quadrotor UAVs and a team formation example of five hybrid quadrotor/biped robot sub-teamsThis book is aimed at researchers and graduate students in control and electrical engineering.
Les mer
This book introduces the centralized robust H∞ team formation tracking control strategy of multi-UAV network system under intrinsic random fluctuation, time-varying delay and packet dropout in wireless communication, and external disturbance.
Les mer
1. An Introduction to Large-Scale Quadrotor UAV Networked Control System 2. Robust H∞ Team Formation Tracking Control of Stochastic Multi-Quadrotor UAV Networked Control System 3. Stochastic Robust H∞ Team Formation Tracking Design of Multi-Quadrotor-UAV Networked Control System under Time-Varying Delay and Random Fluctuation in Smart City 4. Decentralized H∞ PID Team Formation Tracking Control of Large-Scale Quadrotor UAVs under External Disturbance and Vortex Coupling 5. Stochastic Decentralized H∞ Tracking Control of Large-Scale Team Formation UAV Networked Control System with Time-Varying Delay and Packet Dropout Under Interconnected Coupling and Wiener Fluctuation 6. DNN-Based H∞ Decentralized Attack-Tolerant Team Formation Tracking Design of Large-Scale UAV Networked Control System Under Time-Varying Delay and Interconnected Coupling 7. Integrating Local Motion Planning and Robust Decentralized Fault-Tolerant Tracking Control for Search and Rescue Task of Hybrid UAVs and Biped Robots Team System
Les mer

Produktdetaljer

ISBN
9781032829371
Publisert
2024-11-15
Utgiver
Vendor
CRC Press
Vekt
453 gr
Høyde
234 mm
Bredde
156 mm
Aldersnivå
U, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
268

Forfatter

Biographical note

Bor-Sen Chen received B.S. degree in electrical engineering from Tatung Institute of Technology, Taipei, Taiwan, in 1970, and M.S. degree of geophysics from the National Central University, Chungli, Taiwan in 1973, and Ph.D degree from University of Southern California, Los Angeles, CA, USA, in 1982. From 1973 to 1987, he had been a lecturer, associate professor, and professor of Tatung Institute of Technology. From 1987, he has been a professor, chair professor and Tsing Hua distinguished chair professor with the Department of Electrical Engineering of National Tsing Hua University, Hsinchu, Taiwan. His research interests include robust control theory and engineering design, robust signal processing and communication system design, systems biology and their applications.