<p>From the reviews:</p><p>“This volume is an excellent summary of the state of research to date; a concise guide for new adopters of field-based coordination; and a stimulating survey of potential research areas. It will be valuable both as a textbook for advanced undergraduate courses in multiagent systems and as a reference for active researchers in the field.” (H. Van Dyke Parunak, ACM Computing Reviews, November, 2011)</p>

More and more, software systems involve autonomous and distributed software components that have to execute and interact in open and dynamic environments, such as in pervasive, autonomous, and mobile applications. The requirements with respect to dynamics, openness, scalability, and decentralization call for new approaches to software design and development, capable of supporting spontaneous configuration, tolerating partial failures, or arranging adaptive reorganization of the whole system. Inspired by the behaviour of complex natural systems, scientists and engineers have started to adjust their mechanisms and techniques for self-organization and adaption to changing environments. In line with these considerations, Mamei and Zambonelli propose an interaction model inspired by the way masses and particles in our universe move and self-organize according to contextual information represented by gravitational and electromagnetic fields. The key idea is to have the components’ actions driven by computational force fields, generated by the components themselves or by some infrastructures, and propagated across the environment. Together with its supporting middleware infrastructure – available with additional information under http://www.agentgroup.unimore.it – this model can serve as the basis for a general purpose and widely applicable approach for the design and development of adaptive distributed applications.
Les mer
More and more, software systems involve autonomous and distributed software components that have to execute and interact in open and dynamic environments, such as in pervasive, autonomous, and mobile applications.
Les mer
The Scenario.- Upcoming Information Technology Scenarios.- The Role of Coordination and the Inadequacy of Current Approaches.- Modeling Field-based Coordination.- Field-Based Coordination.- Co-Fields and Motion Coordination.- Implementing Field-based Coordination.- Commercial Off-The-Shelf Implementations.- Tuples On The Air (TOTA).- Advanced Applications.- Content-Based Information Access and Coordination.- Self-Assembly in Mobile and Modular Robots.- The Cloak of Invisibility.- Conclusions.
Les mer
Includes supplementary material: sn.pub/extras
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783642066238
Publisert
2010-10-22
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Biographical note

Marco Mamei is research associate at the University of Modena and Reggio Emilia, where he received the PhD in computer science in 2004. His current research interests include distributed and pervasive computing, swarm intelligence, and multiagent systems. He is a member of the IEEE, AIIA and TABOO.

Franco Zambonelli is professor in Computer Science at the University of Modena and Reggio Emilia since 2001. He obtained the Laurea degree in Electronic Engineering in 1992, and the PhD in Computer Science in 1997, both from the University of Bologna. His current research interests include: distributed and pervasive computing, agent-oriented software engineering, self-organization in distributed systems engineering. In these areas, he has published over 120 papers in international fora, co-edited 7 books, received several best paper awards, and has been invited speaker and tutorialist in several international conferences and workshops. He is a member of IEEE, ACM, AIIA, and TABOO.