Succeed in physics with MODERN PHYSICS! Designed to provide simple, clear, and mathematically uncomplicated explanations of physical concepts and theories of modern physics, this physics text provides you with the tools you need to get a good grade. Worked examples, exercises, end-of-chapter problems, special topic sections, and the book-specific website give you the opportunity to test your comprehension and mastery of the material. Studying is made easy with QMTools, an online simulation software that provides modeling tools to help you visualize abstract concepts and practice problem solving.
Les mer
1. RELATIVITY I.
Special Relativity. The Principle of Relativity. The Michelson-Morley Experiment. Postulates of Special Relativity. Consequences of Special Relativity. The Lorentz Transformation. Spacetime and Causality. Summary.
2. RELATIVITY II.
Relativistic Momentum and Relativistic Form of Newton''s Laws. Relativistic Energy. Mass as a Measure of Energy. Conservation of Relativistic Momentum, Mass, and Energy. General Relativity. Summary. Web Essay 1: The Renaissance of General Relativity.
3. THE QUANTUM THEORY OF LIGHT.
Hertz''s Experiments-Light as an Electromagnetic Wave. Blackbody Radiation. The Rayleigh-Jeans Law and Planck''s Law (Online). Light Quantization and the Photoelectric Effect. The Compton Effect and X-Rays. Particle-Wave Complementarity. Does Gravity Affect Light? (Optional). Summary. Web Appendix 1: Calculation of the Number of Modes of Waves in a Cavity.
4. THE PARTICLE NATURE OF MATTER.
The Atomic Nature of Matter. The Composition of Atoms. The Bohr Atom. Bohr''s Correspondence Principle, or Why is Angular Momentum Quantized? Direct Confirmation of Atomic Energy Levels: The Franck-Hertz Experiment. Summary.
5. MATTER WAVES.
The Pilot Waves of de Broglie. The Davisson-Germer Experiment. TEM and SEM microscopes. Wave Groups and Dispersion. Fourier Integrals (Optional). The Heisenberg Uncertainty Principle. If Electrons Are Waves, What''s Waving? The Wave-Particle Duality. A Final Note. Summary.
6. QUANTUM MECHANICS IN ONE DIMENSION.
The Born Interpretation. Wavefunction for a Free Particle. Wavefunctions in the Presence of Forces. The Particle in a Box. CCD''s. The Finite Square Well (Optional). The Quantum Oscillator. Expectation Values. Observables and Operators. Summary.
7. TUNNELING PHENOMENA.
The Square Barrier. Barrier Penetration: Some Applications. Summary. Essay: The Scanning Tunneling Microscope.
8. QUANTUM MECHANICS IN THREE DIMENSIONS.
Particle in a Three-Dimensional Box. Central Forces and Angular Momentum. Space Quantization. Quantization of Angular Momentum and Energy (Optional). Atomic Hydrogen and Hydrogen-like Ions. Summary.
9. ATOMIC STRUCTURE.
Orbital Magnetism and the Normal Zeeman Effect. The Spinning Electron. The Spin-Orbit Interaction and Other Magnetic Effects. Exchange Symmetry and the Exclusion Principle. Electron Interactions and Screening Effects (Optional). The Periodic Table. X-Ray Spectra and Moseley''s Law. Summary.
10. STATISTICAL PHYSICS.
The Maxwell-Boltzmann Distribution. Quantum Statistics, Indistinguishability, and the Pauli Exclusion Principle. Applications of Bose-Einstein Statistics. An Application of Fermi-Dirac Statistics: The Free-Electron Gas Theory of Metals. Summary. Essay: Laser Manipulation of Atoms.
11. MOLECULAR STRUCTURE.
Bonding Mechanisms: A Survey. Molecular Rotation and Vibration. Molecular Spectra. Electron Sharing and the Covalent Bond. Bonding in Complex Molecules (Optional). Summary. Web Appendix 2: Overlap Integrals of Atomic Wavefunctions.
12. THE SOLID STATE.
Bonding in Solids. Classical Free-Electron Model of Metals. Quantum Theory of Metals. Band Theory of Solids. Semiconductor Devices. Lasers. Superconductivity. Summary. Web Essay 2: The Invention of the Laser. Web Essay 3: Photovoltaic Conversion.
13. NUCLEAR STRUCTURE.
Some Properties of Nuclei. Binding Energy and Nuclear Forces. Nuclear Models. Radioactivity. Decay Processes. Natural Radioactivity. Summary.
14. NUCLEAR PHYSICS APPLICATIONS.
Nuclear Reactions. Reaction Cross Section. Interactions Involving Neutrons. Nuclear Fission. Nuclear Reactors. Nuclear Fusion. Recent Fusion Energy Developments. Interaction of Particles with Matter. Radiation Damage in Matter. Radiation Detectors. Summary.
15. ELEMENTARY PARTICLES.
The Fundamental Forces in Nature. Positrons and Other Antiparticles. Mesons and the Beginning of Particle Physics. Classification of Particles. Conservation Laws. Strange Particles and Strangeness. Neutrino Oscillations. How Are Elementary Particles Produced and Particl
Les mer
Produktdetaljer
ISBN
9780357671023
Publisert
2020-11-24
Utgave
3. utgave
Utgiver
Vendor
Brooks/Cole
Vekt
1180 gr
Høyde
26 mm
Bredde
201 mm
Dybde
249 mm
Aldersnivå
U, 05
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
648